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lows from the first by putting ¢ = ¢ = 1 (in more
general case by the replacement ¢ = u, ¢ = p’). There-
fore, we need not write down Egs. (2) and can get the
values of Hz,s from those of Ez,s simply by putting e =
¢ = 1. From Egs. (1) one obtains

ES/E} = (kze — k2’ €)/(kz & 4 k2’ ¢). (3)
As noted above by setting ¢ = ¢ = 1, we obtain
Hy/H = (kz—k2')/(kz + k2'). (4)

Because both E.! and E,” are in the same media,
|EZ7/E;|2 gives directly the reflectance for the p polar-
ization. Similarly [HJ/HJ[Z yields the reflectance for
the s polarization. In fact the substitution kz = %k cos 6,
kz’ = k" cos ¢, and (¢/e)2 = k'/k = sin 6/sin ¢,
where 6 and ¢ are the angles of incidence and refrac-
tion, respectively, will give the familiar forms:

. tan(6—1¢")
ES/Ef = —————
tan (6 4 6')
. sin (6§ — ')
Hf/Hp = — ——————
sin (8 4- 6")

Next, we further apply the new method to the calcula-
tion of the transmission coeflicient of light through a
plate. The advantages of the method become increas-
ingly clear as the complexity of the problem increases.
As discussed above we need to write down only the
boundary conditions which contain Ez,s

e(Ef 4+ Exf) = ¢ (E;m - E™)
kz(Ej— Er) = K'z(E;m — E;m)

(5a)
(5b)
Bt ellad — ¢ (Eym ¢il'od | Em’ g—ik'yd) (5a)’

kzE,t ¢t = k'z (E,m 628 — E™ e~%%2), (5h)
where Em and E™' are two waves inside the plate and

d the thickness of the plate, one can easily obtain from
these equations

Et/ESd =
4kzkz e e—ikd

(kze + kz' €)2 ¢~ — (kz e — kz' €)2 gih’2d,

(6)

By setting e = ¢ = 1 we get
4 kz kz' e~ ikt

(kz 4 K'z)2eikad — (kz — k'z)2 eik'zd,
(7)

Ht/HS =

The absolute squares of Egs. (6) and (7) yield the
transmission coefficients of light through a plate for p
and s polarizations, respectively. This simple and unified
derivation preserves the simplicity of the problem under
study and that of Maxwell’s theory.

Finally, we discuss some other applications of this
method, for example, transition radiation? emitted by
an electron passing through the interface of two different
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media. One needs to know the values Ex and Ey in ad-
dition to Ez. However, the following equations give a
very simple solution:

kxEx + kyEy = — kzEz
— kyEx + kxEy = (w/c) Hz

(8a)
(8b)

where Equation (8b) is the third equation of Faraday’s
law, and Equation (8a) follows from k + E = 0. There-
fore, we have an effortless procedure to find all field
quantities: (1) Write down the conditions which in-
volve Ez’s only; (2) The values of HZ’s follow from
those of Ez,s by putting e = p, ¢ = u; (3) Ex and
Ey can be written down immediately in terms of Ez and
Hz by Egs. (8).

Especially in the problems of transition radiation one
has to perform the inverse Fourier transforms, and the
use of the transparent results obtained by the present
method reduces a tremendous amount of work. For
example, the tangential components of the propagation
vector kx and ky are not contained in Ez and Hz and
enter into Ex and Ey only through the simple transfor-
mation matrix given in Eqs. (8). Transparency attained
by the new approach avoids unnecessary repetition of
integrations for similar terms. Actually this work was
prompted by the need to find a way out of the labyrinth
of complicated algebra encountered in the theory of
transition radiation. A detailed exposition of this and
other applications of the present method will be given
elsewhere.

1 M. Born and E, Wolf, Principles of Optics (Pergamon Press,
Inc.,, New York, 1959), p. 38.

2F, G. Bass and V. M. Yakovenko, Sov. Phys.—Usp. 8, 420
(1965). This review article contains an almost complete bibliog-
raphy on transition radiation up to 1965.

Does a Photon Have a Rest Mass?
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While it is generally stated that a photon has zero
rest mass, it can nevertheless be shown on a formal
basis that certain properties related to a finite rest mass
are exhibited by photons in a material medium. This is
in addition to and distinct from the mass of a photon
associated with a gravitational field.

Consider a beam of photons in vacuum having a fre-
quency ». Let the intensity of the beam be given by

§ = Nhye (1)

where S, the Poynting vector, is the energy crossing unit
area in unit time; Nhy is the energy density, and N is
the number of photons per unit volume. The quantities
h and ¢ are Planck’s constant and the velocity of light
in vacuum, respectively.
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Let us assume that the beam of photons impinges
on a medium whose index of refraction is n and pene-
trates without loss of energy; i.e., the medium is non-
absorbing and nonreflecting. The latter assumption is
really not necessary but is given for convenience. One
could, for example, either take into account the small
amount of reflected energy or else remove this problem
by interposing a layer which reduces the reflection to
zero by interference.

The conservation of energy then gives that S =
constant or

(2)

where N’ is the photon density in the medium, and v is
the light velocity in the medium given by v = ¢/n.

The momentum density of the electromagnetic field
in vacuum is given by G = Nhy/c and as a consequence
it is obvious that the momentum density is related to
the Poynting vector by

G = S/Cz.

N hyc =N 'hv‘U,

(3)

The relation G = S/c¢? can be taken as a consequence
of the symmetry of the electromagnetic energy-momen-
tum tensor.?

The relevancy of Eq. (3) to material media has been
a subject of past inquiry. More recently the symmetry
requirement on the energy-momentum tensor has been
discussed and questioned by Mgller.3

If we use the classical* assumption that the energy-
momentum tensor is to be symmetric in material media
as well as in vacuum, then an application of Eq. (3) to
the material medium gives

N'p’ = (1/¢2) Nhye, (4)

where p’ is the photon momentum in the medium.
From Eq. (2) we have the photon density in the
material medium as N’ = nN. Combining this result
with Eq. (4) we armrive at the fact that the photon
momentum in the medium is less than it is in vacuum

= (1/n) (hv/c). (5)

Let us now approach the problem from an entirely
different direction.

If we formally consider the photon to act like a
particle moving with a velocity v and having an energy,
E, we may, using the standard relativistic equation, write
its momentum as

P = (E/?) o (6)

From this one obtains immediately
p= (hw/c2)o = (hp/c)(1/n),
which is identical with Eq. (5). In other words one

may alternatively derive Eq. (5) by treating the photon
in the medium like a material particle whose mass is
mpn, and whose momentum is

Mpp U
(1—v2/2)%

’

p:

that is, the effective photon mass is given by

mpn = (hy/c?) (1—n=2)%, (7)
The value of myy is, as expected, exceedingly small. If
we choose the wavelength as A = 0.5 p and let the
index of refraction be n = 1.3, the photon mass is myn
= 2.82 X 10-3% gm or mpn = 3.23 X 1076 m,, where
me is the electron mass. The photon mass increases with
frequency so that at x-ray frequencies one picks up a
factor of perhaps 103. However, remembering that the
index of refraction is practically unity for this frequency,
one finds that an x-ray photon also has, in practice, an
exceedingly small mass.

What is the significance of the photon mass (small
or not)? It does not seem unreasonable to believe that
in the event of a “real” photon collision the photon would
exhibit its zero rest mass in spite of the formal nonzero
mass. This is probably analogous to the fact that even
though a conduction electron in a metal may have the
properties of a particle whose effective mass is different
from its real mass (because of the effect of interaction
with the crystal lattice?) the “real” electron mass mani-
fests itself in inertial experiments.

Finally one may ask whether there exists any circum-
stance in which the photon mass could be “measurable.”
A way of looking at this is to compare photon mass den-
sity with energy density. We see that for the 5000-A
photons an energy density of 10 eV per 1028 cm3
(approximately an atom or molecule volume) would give
rise only to about 1.4 X 1075 electron masses and that
such an energy density would be more than sufficient
(about 15 times the heat of vaporization of water) to
evaporate most materials.

One of the authors (J.M.G.) would like to thank Dr.
R. Lichtenstein and Dr. A. Leitner at Rensselaer for
discussions which helped to clarify this problem.
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