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Admittance diagrams are used to analyze qualitatively and quantitatively the behavior of inhomogeneous
thin films with an arbitrary refractive-index function. From this study it follows that one can treat the
behavior of rugate filters by using the concept of effective refractive indices, which are associated with the
phase integral in a simple way. These results are applied to the study of periodic systems, and, as
expected, one can consider high and low effective refractive indices to determine the important
parameters of these stop bands. With these ideas it is possible that one can deal with rugate filters more
closely as homogeneous periodic systems by taking advantage of the existing theory.
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Introduction

It is well known that inhomogeneous thin films with a
sinusoidal refractive-index function behave much like
periodic homogeneous multilayers, and in fact many
scientists have exploited these similarities to develop
a wide variety of stop bands. Consequently rugates
have been studied extensively in the pastl-6 and
currently they constitute one of the most important
applications3 6 of inhomogeneous thin films. On this
subject Southwell7 applied the coupled-mode theory
to develop a method to analyze the spectral perfor-
mance of this kind of filter. His approach gave good
results when the refractive-index function had a
small amplitude compared with the average refrac-
tive index. With this theory he derived simple expres-
sions to calculate the characteristic parameters of the
stop band.

Recently Bovard8 developed a generalization of the
classical 2 x 2 matrix theory for homogeneous sys-
tems to study important properties and parameters of

F. Villa is with the Centro de Investigaciones en Optica, Apartado
Postal 948, C.P. 37000 Leon Gto., Mexico. He is also a graduate
student at the Centro de Investigacion Cientifica y Educaci6n
Superior de Ensenada, Instituto de Fsica de la Universidad
Nacional Automata de Mexico, Ensenada, Mexico. R. Machorro
and J. Siqueiros are with the Instituto de Fisica de la Universidad
Nacional Autonoma de M6xico, Laboratorio Ensenada, Apartado
Postal 2681, C.P. 22800 Ensenada, B.C. M6xico. L. E. Regalado is
at Apartado Postal 5-088, C.P. 83190 Hermosillo, Sonora, M6xico.

Received 5 April 1993; revised manuscript received 20 Septem-
ber 1993.

0003-6935/94/13267206$0600/0,
© 1994 Optical Society of America.

inhomogeneous systems in general. From this theory
the Fourier-transform synthesis technique comes
naturally, and although it is approximated it consti-
tutes a powerful tool for thin-film design.

In this study we establish arguments to analyze the
close relationship between homogeneous multilayers
and inhomogeneous thin films. Using the matrix
theory developed by Bovard and the admittance con-
struction,9 we find the intersections of the admittance
curve with the real axis to calculate the effective
refractive indices.

This concept is applied to a rugate filter, and we
demonstrate that very simple expressions can be
derived to determine the width, height, and wave-
length shift of the stop band under nonnormal inci-
dence. Finally we show that these results agree with
those obtained by Southwell7 when the modulation of
the refractive-index function is small.

Theory

Admittance of an Inhomogeneous System

Following the matrix formalism for propagation of
the electromagnetic field through an inhomogeneous
nonabsorbing thin film8 (Fig. 1), we see that the
admittance Y of a thin film of thickness z is involved
in the characteristic matrix as

(1\ = [~(O) L(F3) iG(P) 1 

E r a E8 a the el(0) fed in te (
4'q(P>)*0)]l/2 K(P) |(,]F(Pf)

Here Ei and E are the electric fields in the incl-
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Fig. 1. Refractive index of the inhomogeneous thin film as a
function of physical thickness.

the equation that determines the admittance locus:

CL 0~~~2 + y 2 + q2

- (g2 + 12)(X2 + y 2) - X

+ 20x(gf + k)y + (f2 + 2)aiiO = 0. (6)

If all parameters were constant except x and y, Eq.
Z (6) would represent circles with their centers on

[ i(a 2 + Y2 + 2) iio(gf + 1k)]
2ar(g2 + 12) ' g2 + 12 J

dence medium and the substrate, respectively, and 13
is the phase integral:

1(Z) = A j n(z)cos 0(z)dz, (2)

where n(z) is the index of refraction of the film, 0(z) is
the propagation angle, and X is the wavelength. The
total admittance of the substrate plus the thin film at
a given thickness is represented by the complex
quantity Y' = a + iy. The angular dependence of
the admittance of the film at a given point z is

fqvn(z)cos 0(z) case TE

qz vn(z)/cos 0(z) case TM' (3)

where nq is the admittance of the vacuum space.
From Eq. (1) we can obtain the admittance equa-

tion, which gives the evolution of the admittance as
the film grows:

-+ F( t + i[(-qoq)1/2K + (-)Fy1
y = X+ y - I 1/2 

IN L - (ll)1/2Gy + i(,o'q)/2 Gy

(4)

Here we call o = -9(0) and omit the explicit depen-
dence on P.

Functions F(p), K(X), G(p), and L(X) are expressed
in terms of another set of functions by

F() = f (P)cos P + k()sin ,

K(4) = f(P)sin - k(P)cos P,

G(P) = I(P)sin P + g(P)cos P,

L(4) = I(P)cos P - g(P)sin . (5)

The functions f(P), k(p), g(), and 1(1), which are
related to the index profile through an integral equa-
tion, are in Appendix A.

Using Eqs. (5) in Eq. (4) and separating the real and
imaginary parts and using them to eliminate the
phase parameter 1, after some algebra we can obtain

and radii at

ra =
Tlo[(a2 + y2 + 2)2 - 42 2]1/2

2av (g 2 + 12)

However, functions g, f, 1, and k change with phase
13, and the radius changes too as the film grows.
Even though we cannot predict the behavior of these
functions analytically, it is possible to establish some
restrictions to analyze some interesting points: the
intersections of the admittance curve with the real
axis, for example. To be sure that the curve inter-
sects the real axis, we can demonstrate that the
condition

gf + k I < [(a2 + y2 + 92)2- 4a2-2]1/2

must be satisfied.
When the coupling condition q(0) = r i and 'i(13) =

-'s is satisfied, it can be demonstrated that

gf + 1k = 0 (10)

for the intersections with the real axis. Assuming
that the substrate has no absorption, setting y = 0 in
Eq. (6), and taking into account that ac(0) = m, 1(0) =
1, and g(0) = 0, we give the intersections as

"o= 1s, (11)

g ox = 
Xj_,(g + 2)

j = 1,2, 3,....

Here x0 is the starting point on the curve where = 0
and x; shows all the subsequent intersections with the
real axis as the phase thickness increases.

Now let us consider the reflection coefficient

,. 1i-y
p=i L . (13)

Considering the coupling condition given above, we
can demonstrated that

( 2(gf + 1k) - (14)Ip~inr~ -(f+l1)
2 + (k.g2' (4
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Fig. 2. Periodic refractive-index function with period o/
2n1. Here z = /47E. The quantity e is a small number that
identifies the points that correspond to optical thicknesses of odd
multiples of Xo/4.

where p represents the change in phase on reflection.
If we consider the condition of the intersections given
in Eq. (10), we find from Eq. (14) that

9p = mr, m = 0,1, 2 .... (15)

which means that whenever the optical thickness is a
multiple of a quarter of a wavelength

n(z)cos 0(z)dz = m X -
0~~~~~
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Fig. 3. Phase integral for a period refractive-index function,
which is also a periodic but increasing curve that oscillates around
the oblique line whose slope depends on the magnitude of the
average refractive index.

Here 8 is the relative fluctuation of the refractive-
index function about the average value ni. With this
design we can calculate the phase integral in the
interval [zl, Z 2] from Eq. (2) to obtain (Fig. 3)

2r_ 8 4 r _ Z2= -nz + cos -nz).
Xo 2 o (16)

(18)

The admittance curve intersects the real axis.

Admittance of Periodic Systems

The matrix formalism permits us to treat a stack of
thin films by taking the product of the characteristic
matrices of each component film to obtain the total
response of the system. For an inhomogeneous thin
film with a periodic refractive-index function around
a mean value ni (Fig. 2), it is possible to calculate its

Whenever the optical thickness is a multiple of
X0/2, the refractive index takes the initial mean value
n, and we can define a period that will be replicated a
number of times. Every period is divided into two
slices with equal optical thicknesses Xo/4. We may
then treat this configuration by using the associated
characteristic matrix to study the total behavior of
such a periodic inhomogeneous system with p peri-
ods:

n(13H) 1/2 iG(PH) [n(PH + L)1'/ 2

1 n(O) J L(1H) [n(13H)n(O)]12 Ln(H) J L(L)

\Y .\i[n3H)n 11/2H ()] F(PH) i[n(PH+ PL)n(PH)Th/2K(L)

spectral performance easily by taking advantage of
the periodicity of the system. We proceed to divide
the film into slices, identifying periods as in the case
of homogeneous multilayer stacks. The product of
the characteristic matrices that correspond to each
period yields the optical performance.

For simplicity let us consider a film under normal
incidence with the refractive-index function defined
in Ref. 7 in terms of the physical thickness z:

n(z) = ( + 8 sin i z). (17)

iG(P3L) P

[n(PH + 1L)n(1H)]1/2 ( 1
[ n(PH + 1/2 kn, Eso

(19)

where the dependence on OH and L of the functions
L, G, H, and K indicates that they must be evaluated
within the limits from zero to OH or from AH to AL,

respectively.
The admittance loci for any periodic profile are

open curves because of the index profile variation as
shown in Fig. 4; a useful parameter that can be
obtained from this diagram is the intersection of the
admittance curve with the real axis, which corre-
sponds to the optical thickness equal to mXO/4, where
m is an integer. Rewriting Eqs. (11) and (12), we
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Fig. 4. Admittance of the rugate filter at the wavelength of the
design. The curve intersections correspond to optical thickness
multiples of Xo/4.

find that
xo = ns,

(20)
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Fig. 5. Width function Ag of a stop band with a sinusoidal
refractive-index function versus amplitude 5. The parameters in
Eq. (17) are i = 3.5 and Xo = 1000 nm.

where e is defined as

j = 1,2,3... (21)

Considering the dependence on OH or AL, we can call

2 n(O)n(l3H)

nH - ( OH) + f( OH)
nL= l(PH)n(PH + 13L) (22)

g 2 (PL) +f 2 (3L)

so that intersections for normal incidence can be
expressed as

n )j=0, 2, 4, (
xj = nHi+1 (23)

1, 3, 5, ...

These intersections represent the turning points in
the reflectivity of the system, interpreted now as a
stack of homogeneous layers.

The calculation of the effective indices in this stack
is directly related to the phase integral. From Eq.
(16) we obtain

= - [1 + cos(Tr)],
Irr

(28)

which represents the exact solution. Taking the
first and second terms of the cosine series expansion,

28E = -) (29)
IT

-1 + (1 + 482)1/2
(30)

we obtain the first- and second-order approximations.
We can now calculate the number of periods that

we need to reach a given reflectance Ro with this
periodic system: J n 1

p

20I AH
nH= LA n(z)dz,

H n

1AL

nL = - n(z AH)dz,
AL J

(24)

15

(25)

where AH and AL represent the physical thicknesses
associated with two slices with optical thicknesses
Xo/4 of high and low effective index, respectively, and
we can show that

AH = -(1 - ) (26)

AL = -4 (1 + ), (27)

5

In n i + (R0 )112J

ns + () 12)
2 nL l
2I nH)

(31)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 6. Number of periods that are needed to obtain a reflectance
of Ro = 99.99% for the wavelength of the design in Fig. 5.
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Fig. 7. Wavelengths of the stop band:
limit.

and the width of the stop band"'

Ag = 2arcsin( H ')
T nH + nL

films since they show a straightforward picture of
their behavior. It is also shown that it is possible to
treat an inhomogeneous film as a homogeneous mul-
tilayer stack with periods formed by two effective
refractive indices, high and low. We have calculated
for a proposed system the number of periods required
for a given reflectivity, the width, and the shift of the
stop band under nonnormal incidence. These are
the basic parameters for this kind of systems. Our
results are compared with those reported in the
literature previously.

Extensions of this method to other multilayer
systems such as narrow-band filters and multiline
stop bands are the subjects of future research.

Appendix A: Integral Functions

Functions f (P), g(3), k(1), and (g) are a
by

series given

fAP) = 1 + C1(13 + C2(1 + *-',

g(1) = S1(3) + S 2(0) + S3() + * * * 

(13) = - C1() + C2S(3) - -.,
k(p) = S10S - S20S + S30 - * *, (Al)

where Cm(F3) and Sm(,f) are the family of integral
functions:

(a) upper limit, (b) lower

(32)

In this case g = X0/X is different from g in Eqs. (5).
Figures 5 and 6 show the behavior of Ag andp for the
different approximations, and we include for compari-
son the results Southwell obtained with the coupled-
wave theory. Figure 7 shows the edges of the stop
band in terms of the wavelength.

The shift in wavelength of the stop band under
nonnormal incidence can be obtained from Eq. (2) as

fn(z)cos (z)dz fZ n(1 - n2 dz. (33)

The wavelength shift in Southwell's result can be
found with the equation for small amplitude fluctua-
tions in the refractive index, that is, 8 << 1 in Eq. (17);
then

AX ( ni2 )Xo. (34)

Conclusion

It has been demonstrated that admittance diagrams
can be helpful in the analysis of inhomogeneous thin

Cl(13) = r(l)cos 21,d1,,

S,(13) = fr(p3l)sin2PldI3i,

1

C2(f3) = JJ r(Pl)r(P32)cos 2(132 - Pl)dP 2d3,,

Ad 1

S20 = r(P1r(P2)sin 2(P2 - ldP2dP,,

(A2)

(A3)

(A4)

(A)

Cm(13) = ...

X COs 2(1m13- + - + lP)

x d13m . . . d 2dpl,

p i3 l j'Pm-i
Sm(13)= 1 ... | r(Pi)r(132).. r(m)

x sin 2(p. - P.- + * * + - -- )

X d3m . . . d 2dP,,

r(p) = 2(13).

(A6)

(A7)

(A8)
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